
Signatures of the Dirac electron in the flux dependence of total persistent currents in isolated

Aharonov–Bohm rings

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 242206

(http://iopscience.iop.org/0953-8984/19/24/242206)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 19:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/24
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 242206 (6pp) doi:10.1088/0953-8984/19/24/242206

FAST TRACK COMMUNICATION

Signatures of the Dirac electron in the flux dependence
of total persistent currents in isolated Aharonov–Bohm
rings

I I Cotaescu and E Papp

Department of Theoretical Physics, West University of Timisoara, 300223, Romania

Received 9 February 2007, in final form 25 April 2007
Published 30 May 2007
Online at stacks.iop.org/JPhysCM/19/242206

Abstract
This paper deals with the total persistent current at T = 0 produced by the exact
energy solution of the Dirac electron moving on isolated 1D Aharonov–Bohm
rings. Leading contributions concerning the non-relativistic limit are written
down for large values of the electron number. Usual non-relativistic currents
get reproduced, but now in terms of a reversed parity of the electron number.
Such an ‘anomaly’ is able to serve as a signature of the Dirac electron referred
to above.

1. Introduction

Persistent currents in isolated small 1D rings threaded by a magnetic flux have attracted
appreciable interest for nearly half a century [1–3]. Such currents, which concern a large
number of mesoscopic systems ranging from L-ring circuits [4] to nanotubes [5], have been
observed in experiments with GaAs/GaAlAs self-assembled rings [6]. Besides the influence
of the ring discretization [7, 8], the role of impurities [3, 9] and of the electron–electron
interaction [3, 10] has also been accounted for. The effect of the Rashba spin–orbit interaction
(SOI) [11] on electrons moving on 1D rings has also received much attention in connection
with the increasing role of the spin in several areas like magnetotransport through 1D rings [12],
persistent currents [13], the quantum spin Hall effect [14] or nanowires under transverse electric
fields [15]. On the other hand we are aware that the SOI arises as a single particle effect
from the Dirac equation, which also means that further applications, such as the relativistic
Hall effect [16], remain desirable. Moreover, there are actually massless Dirac fermions
in 2D, namely layers of graphene, which have been isolated recently in experiments [17].
These Dirac-like electronic systems exhibit a number of unusual properties such as the
unconventional quantum Hall effect [18], semimetal–insulator transitions under a transverse
magnetic field [19], magnetic oscillations [18, 20] or the onset of a conductivity minimum [17].
This has led to the explanation of related ‘anomalies’ concerning the unusual quantization of
the Hall conductivity at half-integer filling factors or the onset of an additional phase shift of π

provided by Shubnikov–de Haas oscillations.
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We shall use this opportunity to show that there is still a further ‘anomaly’, this time
concerning the flux dependence of total persistent currents in isolated 1D Aharonov–Bohm
(AB) rings without leads. Neglecting the electron–electron interaction as well as the influence
of impurities, we found that the total persistent current at zero temperature (T = 0) produced
by the exact energy of the Dirac electron on the AB ring reproduces well-known non-relativistic
results [7], but with a reversed parity of the electron number. This corresponds to the
appearance of an additional flux-shift of 1/2 in the dependence of the current on the number of
flux quanta, i.e. on the dimensionless flux parameter β = �/�0. Here � = π B R2 stands for
the magnetic flux through the 1D ring of radius R, while �0 = hc/e denotes the flux quantum.

2. The energy of the Dirac electron on the circle

An electron moving on a circle with the circumference L = 2π R is described by the stationary
Dirac equation [21]

H�(ϕ) = E�(ϕ) (1)

where �T(ϕ) = (�1,�2; χ1, χ2) stands for the transposed four-spinor. Resorting to
cylindrical coordinates leads to the matrix Hamiltonian

H =
⎛
⎜⎝

m0c2 0 0 T−
0 m0c2 T+ 0
0 T− −m0c2 0

T+ 0 0 −m0c2

⎞
⎟⎠ (2)

where

T± = ± h̄c

R
exp(±iϕ)

∂

∂ϕ
. (3)

The polar angle is denoted as usual by ϕ ∈ [0, 2π]. The influence of a transverse magnetic
field

−→
B = B−→ez is incorporated by virtue of the minimal substitution

∂

∂ϕ
→ ∂

∂ϕ
+ iβ (4)

working in the symmetric gauge
−→
A = (

−→
B × −→x )/2. One realizes that (1) can be solved in

terms of planar waves like

�(ϕ) ∼ exp(i(r − β)) (5)

provided that

r = 1

2

[
1 ±

(
1 + 4R2

h̄2c2
(E2 − m2

0c4)

)1/2]
. (6)

In addition, the periodicity condition

�(ϕ + 2π) = �(ϕ) (7)

has to be accounted for, which results in the energy solution

E = Em(β) =
[

m2
0c4 + h̄2c2

R2
(m + β)(m + β − 1)

]1/2

(8)

where m = 0,±1,±2, . . . is an arbitrary integer. Note that the term (m +β)2 under the square
root can be traced back to the Aharonov–Bohm effect [7].

Next one realizes that by virtue of the choice of T = 0, we have to select energies, say
E = Em(β), which are smaller than the Fermi one, i.e. than EF = h̄2k2

F/2m0. This amounts to
introducing the difference

Em(β) = Em(β) − m0c2 (9)

instead of Em(β), which exhibits a magnitude of the orders needed.
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3. Parameter fixings and related approximations

We have to realize that specifying the Fermi wavevector kF results in a fixed value Ne of the
number of electrons. This number reads

Ne = 2RkF = L

π
kF (10)

which proceeds in accord with the free electron description, i.e. by virtue of a direct
enumeration of phase-space cells. Using (9), one sees that energies smaller than EF are
provided by selected m-intervals for which

(m + β)(m + β − 1) � N2
e

4
(1 + ε) (11)

where

ε = EF

2m0c2
= N2

e

16

l2
C

R2
(12)

and lC = h̄/m0c. It is understood that the edges of such intervals, which are characterized by
integer m-realizations, are of a special interest for the formulation of a closed description. One
realizes that a such problem is hardly tractable, if not impossible, in terms of arbitrary values
of the parameter ε. However, the parameter ε is rather small in practice. Indeed, the Fermi
energy of metals and semiconductors has, in general, a magnitude of the order of some few
eVs, while m0c2 ≈ 5 × 105 eV. Accordingly, ε ≈ 10−6, which confirms our expectations. On
the other hand one has ε ∼= 0.9N2

e 10−12 for a mesoscopic ring with a typical small radius of
about R = 100 nm. This means that large Ne values like Ne

∼= 103, which are characteristic for
small metallic rings [22], comply with negligible ε ≈ 10−6 magnitudes just referred to above.
Note that in this latter case the Fermi velocity has a magnitude of the order of 6 × 107 cm s−1.
Moreover, mesoscopic metallic rings for which R ≈ 1 μm, such as found in the case of single
isolated gold loops [23] or cooper rings [24], can also be invoked. This leads, of course, to
yet larger values of Ne. The point is that by virtue of such data one meets the non-relativistic
ε → 0 limit, but useful simplifications can also be made.

So there are reasons for replacing (11) with the simplified inequality

(m + β)(m + β − 1) � N2
e

4
(13)

which differs, however, from the non-relativistic descriptions discussed before [7, 8]. Next it is
clear that (13) has to be handled in terms of basic flux intervals of unit length like β ∈ [β1, β2],
which relies on the unit flux periodicity of the Fourier series description of related β-dependent
currents. One has β2 − β1 = 1 and |βi | � 1, with the understanding that βi (i = 1, 2) is
sensitive to Ne. One should then have [β1, β2] = [0, 1] or [β1, β2] = [−1/2, 1/2], respectively.

One realizes that (13) leads, in general, to selected m-intervals like

m ∈ [−M−(β), M+(β)] (14)

where

M±(β) = Int

[((
β − 1

2

)2

+ N2
e

4

)1/2

∓
(

β − 1

2

)]
> 0 (15)

are pertinent integer-part functions. However, we have to look for a closed description, i.e. for
integer realizations of both M±(β1) and M±(β2) edges. An explicit solution can then be readily
found using large Ne values discussed above. This means that the square root in (15) can be
approximated reasonably as((

β − 1

2

)2

+ N2
e

4

)1/2 ∼= Ne

2
(16)
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so that

M±(β) ∼= Ne

2
∓

(
β − 1

2

)
. (17)

Accordingly, one has

β ∈ [β1, β2] (18)

where

βi = βi(Ne) = (−1)i

2
+ 1 − (−1)Ne

4
(19)

so that β ∈ [−1/2, 1/2] and β ∈ [0, 1] if Ne is even and odd, respectively.

4. The derivation of total currents

Now we are ready to derive total persistent currents at T = 0 characterizing the Dirac electron
on the 1D AB ring. First, the current carried by (9) is given by

Im(β) = − c

�0

∂

∂β
Em(β) (20)

so that

Im(β) = − 2

Ne
IF

m + β − 1/2


m(ε, β)
. (21)

The present current scale is

IF = eh̄kF

2π Rm0
(22)

whereas


m(ε, β) =
[

1 + 16ε

N2
e

(m + β)(m + β − 1)

]1/2

. (23)

This yields the total persistent current

I (β, ε) = − 2

Ne
IF

∑∗ m + β − 1/2


m(ε, β)
(24)

where the asterisk means that the summation should be done in accord with (11). So far we
have just to say that I (β, ε) is subject to an upper bound like

I (β, ε) � − 2

Ne
I ∗
F

m + β − 1/2

1 + 2ε
(25)

in accord with (11) and (23). However, the problem remains, namely the introduction of an
explicit summation interval.

However, applying the ε → 0 limit yields 
m(0, β) = 1, in which case the total current is
given, in general, by

I (±)(β) = 1
2 [I (±)

1 (β) + I (±)

2 (β)] (26)

where

I (±)
i (β) = − 2

Ne
IF

S(±)
i

(
m + β − 1

2

)
. (27)

The summation intervals displayed above look like

S(±)
i = [−M (±)

− (βi), M (±)
+ (βi)] (28)
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which proceeds in accord with (17) and (19). The total currents produced by the present non-
relativistic limit are then given by

I (±)(β) = I (±)
1 (β) = I (±)

2 (β) = −IF
Ne + 1

Ne

(
2β − 1 + (−1)Ne

2

)
(29)

where (Ne + 1)/Ne
∼= 1 and where the superscripts are given by ± = (−1)Ne . Such currents

reproduce the actual non-relativistic results written down before [8], but in terms of an inverted
parity. Equivalently, non-relativistic results get reproduced precisely if β in (29) is replaced by
the shifted expression

β → β + (−1)Ne

2
(30)

which can also be viewed as reflecting the influence of the spin. Accordingly the non-relativistic
current is given by

I (±)
NR (β) = −IF

Ne + 1

Ne

(
2β + (−1)Ne − 1

2

)
(31)

which works in conjunction with the shifted β-interval

[β1, β2] →
[
β1 + (−1)Ne

2
, β2 + (−1)Ne

2

]
=

[
(−1)Ne − 1

4
,
(−1)Ne + 3

4

]
(32)

instead of (19). In other words, we have succeeded in establishing a further ‘anomaly’, able to
serve as a signature of the Dirac electron.

Generalized current formulae can also be easily established with the help of Fourier series.
This yields the current

IFS(β, Ne) = 2IF

π

Ne + 1

Ne

∞∑
l=1

(−1)l cos(LlkF)

l
sin(2πlβ) (33)

which is a periodic function in β with unit period, as one might expect.

5. Conclusions

The total persistence produced by the energy of the Dirac electron on an isolated 1D AB-ring
has been discussed for large values of the electron number. This opens the way to establish
the non-relativistic limit, such as given by (29), which represents the main result of this paper.
Equation (29) looks like the actual non-relativistic result (31), but it is different. Indeed, the
current (29) originates from (8), which stands for the relativistic counterpart of the energy of
the Aharonov–Bohm ring. The ‘anomaly’ established in this manner is also a new finding,
which has its own interest. Indeed, handling the ‘anomaly’ amounts to changing the parity,
which looks interesting from the theoretical point of view. Higher-order relativistic corrections
could also be made by combining power series in ε of 1/
m(ε, β) with (13) instead of (11).
Such calculations are feasible, but they go beyond the immediate scope of this short paper.
It should be mentioned that mesoscopic metallic rings with attached leads deserve further
attention [12, 25].
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